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Abstract. In many settings, such as robotics, demonstrations provide
a natural way to specify tasks. However, most methods for learning
from demonstrations either do not provide guarantees that the learned
artifacts can be safely composed or do not explicitly capture temporal
properties. Motivated by this deficit, recent works have proposed learning
Boolean task specifications, a class of Boolean non-Markovian rewards
which admit well-defined composition and explicitly handle historical
dependencies. This work continues this line of research by adapting
maximum causal entropy inverse reinforcement learning to estimate the
posteriori probability of a specification given a multi-set of demonstrations.
The key algorithmic insight is to leverage the extensive literature and
tooling on reduced ordered binary decision diagrams to efficiently encode
a time unrolled Markov Decision Process. This enables transforming a
naïve algorithm with running time exponential in the episode length, into
a polynomial time algorithm.

1 Introduction

Fig. 1: Example of an agent
unsuccessfully demonstrat-
ing the task “reach a yel-
low tile while avoiding red
tiles” .

In many settings, episodic demonstrations provide
a natural and robust mechanism to partially specify
a task, even in the presence of errors. For example,
consider the agent operating in the gridworld illus-
trated in Fig. 1. Blue arrows denote intended actions
and the solid black arrow shows the agent’s actual
path. This path can stochastically differ from the
blue arrows due to a downward wind. One might
naturally ask: “What task was this agent attempting
to perform?” Even without knowing if this was a
positive or negative example, based on the agent’s state/action sequence, one can
reasonably infer the agent’s intent, namely, “reach the yellow tile while avoiding
the red tiles.” Compared with traditional learning from positive and negative
examples, this is somewhat surprising, particularly given that the task is never
actually demonstrated in Fig. 1.

This problem, inferring intent from demonstrations, has received a fair amount
of attention over the past two decades particularly within the robotics commu-
nity [22][33][5][30]. In this literature, one traditionally models the demonstrator
as operating within a dynamical system whose transition relation only depends
on the current state and action (called the Markov condition). However, even
if the dynamics are Markovian, many tasks are naturally modeled in history
dependent (non-Markovian) terms, e.g., “if the robot enters a blue tile, then
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it must touch a brown tile before touching a yellow tile”. Unfortunately, most
methods for learning from demonstrations either do not provide guarantees that
the learned artifacts (e.g. rewards) can be safely composed or do not explicitly
capture history dependencies [30].

Motivated by this deficit, recent works have proposed specializing to task
specifications, a class of Boolean non-Markovian rewards induced by formal lan-
guages. This additional structure admits well-defined compositions and explicitly
captures temporal dependencies [15][30]. A particularly promising direction has
been to adapt maximum entropy inverse reinforcement learning [33] to task spec-
ifications, enabling a form of robust specification inference, even in the presence
unlabeled demonstration errors [30].

However, while powerful, the principle of maximum entropy is limited to
settings where the dynamics are deterministic or agents that use open-loop
policies [33]. This is because the principle of maximum entropy incorrectly allows
the agent’s predicted policy to depend on future state values resulting in an
overly optimistic agent [19]. For instance, in our gridworld example (Fig. 1), the
principle of maximum entropy would discount the possibility of slipping, and
thus we would not forecast the agent to correct its trajectory after slipping once.

This work continues this line of research by instead using the principle of
maximum causal entropy, which generalizes the principle of maximum entropy to
general stochastic decision processes [32]. While a conceptually straightforward
extension, a naïve application of maximum causal entropy inverse reinforcement
learning to non-Markovian rewards results in an algorithm with run-time expo-
nential in the episode length, a phenomenon sometimes known as the curse of
history [24]. The key algorithmic insight in this paper is to leverage the extensive
literature and tooling on Reduced Ordered Binary Decision Diagrams (BDDs) [3]
to efficiently encode the time unrolled composition of the dynamics and task
specification. This allows us to translate a naïve exponential time algorithm into
a polynomial time algorithm. In particular, we shall show that this BDD has size
at most linear in the episode length making inference comparatively efficient.

1.1 Related Work: Our work is intimately related to the fields of Inverse Re-
inforcement Learning and Grammatical Inference. Grammatical inference [8]
refers to the well-developed literature on learning a formal grammar (often an
automaton) from data. Examples include learning the smallest automata that
in consistent with a set of positive and negative strings [7][8] or learning an
automaton using membership and equivalence queries [1]. This and related work
can be seen as extending these methods to unlabeled and potentially noisy
demonstrations, where demonstrations differ from examples due to the existence
of a dynamics model. This notion of demonstration derives from the Inverse
Reinforcement Learning literature.

In Inverse Reinforcement Learning (IRL) [22] the demonstrator, oper-
ating in a stochastic environment, is assumed to attempt to (approximately)
optimize some unknown reward function over the trajectories. In particular, one
traditionally assumes a trajectory’s reward is the sum of state rewards of the
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trajectory. This formalism offers a succinct mechanism to encode and generalize
the goals of the demonstrator to new and unseen environments.

In the IRL framework, the problem of learning from demonstrations can then
be cast as a Bayesian inference problem [25] to predict the most probable reward
function. To make this inference procedure well-defined and robust to demonstra-
tion/modeling noise, Maximum Entropy [33] and Maximum Causal Entropy [32]
IRL appeal to the principles of maximum entropy [13] and maximum causal
entropy respectively [32]. This results in a likelihood over the demonstrations
which is no more committed to any particular behavior than what is required to
match observed statistical features, e.g., average distance to an obstacle. While
this approach was initially limited to rewards represented as linear combinations
of scalar features, IRL has been successfully adapted to arbitrary function approx-
imators such as Gaussian processes [20] and neural networks [5]. As stated in the
introduction, while powerful, traditional IRL provides no principled mechanism
for composing the resulting rewards.

Compositional RL: To address this deficit, composition using soft optimal-
ity has recently received a fair amount of attention; however, the compositions
are limited to either strict disjunction (do X or Y) [26] [27] or conjunction
(do X and Y) [6]. Further, this soft optimality only bounds the deviation from
simultaneously optimizing both rewards. Thus, optimizing the composition does
not preclude violating safety constraints embedded in the rewards (e.g., do not
enter the red tiles).

Logic based IRL: Another promising approach for introducing composa-
tionality has been the recent research on automata and logic based encodings of
rewards [11][14] which admit well defined compositions. To this end, work has
been done on inferring Linear Temporal Logic (LTL) formulas by finding the
specification that minimizes the expected number of violations by an optimal
agent compared to the expected number of violations by an agent applying
actions uniformly at random [15]. The computation of the optimal agent’s ex-
pected violations is done via dynamic programming on the explicit product of the
deterministic Rabin automaton [4] of the specification and the state dynamics. A
fundamental drawback of this procedure is that due to the curse of history, it
incurs a heavy run-time cost, even on simple two state and two action Markov
Decision Processes. Additionally, as with early work on grammatical inference and
IRL, these techniques do not produce likelihood estimates amenable to Bayesian
inference.

Maximum Entropy Specification Inference: In our previous work [30],
we adapted maximum entropy IRL to learn task specifications. Similar to standard
maximum entropy IRL, this technique produces robust likelihood estimates.
However, due to the use of the principle of maximum entropy, rather than
maximum causal entropy, this model is limited to settings where the dynamics
are deterministic or agents with open-loop policies [33].

Inference using BDDs: This work makes heavy use of Binary Decision
Diagrams (BDDs) [3] which are frequently used in symbolic value iteration
for Markov Decision Processes [9] and reachability analysis for probabilistic
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systems[18]. However, the literature has largely relied on Multi-Terminal BDDs
to encode the transition probabilities for a single time step. In contrast, this work
introduces a two-terminal encoding based on the finite unrolling of a probabilistic
circuit. To the best of our knowledge, the most similar usage of BDDs for
inference appears in the independently discovered literal weight based encoding
of [10] - although their encoding does not directly support non-determinism or
state-indexed random variables.

Contributions: The primary contributions of this work are two fold. First,
we leverage the principle of maximum causal entropy to provide the likelihood
of a specification given a set of demonstrations. This formulation removes the
deterministic and/or open-loop restriction imposed by prior work based on the
principle of maximum entropy. Second, to mitigate the curse of history, we
propose using a BDD to encode the time unrolled Markov Decision Process that
the maximum causal entropy forecaster is defined over. We prove that this BDD
has size that grows linearly with the horizon and quasi-linearly with the number
of actions. Furthermore, we prove that our derived likelihood estimates are robust
to the particular reward associated with satisfying the specification. Finally, we
provide an initial experimental validation of our method. An overview of this
pipeline is provided in Fig. 8.

2 Problem Setup
We seek to learn task specifications from demonstrations provided by a teacher
who executes a sequence of actions that probabilistically change the system state.
For simplicity, we assume that the set of actions and states are finite and fully
observed. Further, until Sec. 5.3, we shall assume that all demonstrations are a
fixed length, τ ∈ N. Formally, we begin by modeling the underlying dynamics as
a probabilistic automaton.

Definition 1 A probabilistic automaton (PA) is a tuple (S, s0, A, δ),
where S is the finite set of states, s0 ∈ S is the initial state, A is a finite set
of actions, and δ specifies the transition probability of going from state s to
state s′ given action a, i.e. δ(s, a, s′) = Pr(s′ | s, a).

A tracea, ξ, is a sequence of (action, state) pairs implicitly starting from
s0. A trace of length τ ∈ N is an element of (A× S)τ .
a sometimes referred to as a trajectory or behavior.

Note that probabilistic automata are equivalently characterized as 11/2 player
games where each round has the agent choose an action and then the environment
samples a state transition outcome. In fact, this alternative characterization is
implicitly encoded in the directed bipartite graph used to visualize probabilistic
automata (see Fig 2b). In this language, we refer to the nodes where the agent
makes a decision as a decision node and the nodes where the environment
samples an outcome as a chance node.

Next, we develop machinery to distinguish between desirable and undesirable
traces. For simplicity, we focus on finite trace properties, referred to as specifi-
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(a) Example trajectory in a gridworld
where the agent can attempt to move
right and down, although with a small
probability the wind will move the agent
down, independent of the action.
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(b) PA describing the dynamics of
Fig 2a as a 11/2 player game. The large
circles indicate states (agent decisions)
and the small black circles denote the
environment response probabilities.

Fig. 2: Example of gridworld probabilistic automata (PA).

cations, that are decidable within some fixed τ ∈ N time steps, e.g., “Recharge
before t=20.”

Definition 2 A task specification, ϕ, (or simply specification) is a
subset of traces. For simplicity, we shall assume that each trace is of a fixed
length τ ∈ N, e.g.,

ϕ ⊆ (A× S)τ (1)

A collection of specifications, Φ, is called a concept class. Further, we
define true def= (A× S)τ , ¬ϕ def= true \ ϕ, and false def= ¬true.

Often specifications are not directly given as sets, but induced by abstract
descriptions of a task. For example, the task “avoid lava” induces a concrete set
of traces that never enter lava tiles. If the workspace/world/dynamics change,
this abstract specification would map to a different set of traces.

2.1 Specification Inference from Demonstrations: The primary task in
this paper is to find the specification that best explains/forecasts the behavior of
an agent. As in our prior work [30], we formalize our problem statement as:

Definition 3 The specification inference from demonstrations prob-
lem is a tuple (M,X,Φ,D) where M = (S, s0, A, δ) is a probabilistic automa-
ton, X is a (multi-)set of τ -length traces drawn from an unknown distribution
induced by a teacher attempting to demonstrate (satisfy) some unknown task
specification within M , Φ is a concept class of specifications, and D is a
prior distribution over Φ. A solution to (M,X,Φ,D) is:

ϕ∗ ∈ arg max
ϕ∈Φ

Pr(X | M,ϕ) · Pr
ϕ∼D

(ϕ) (2)

where Pr(X | M,ϕ) denotes the likelihood that the teacher would have
demonstrated X given the task ϕ.
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Of course, by itself, the above formulation is ill-posed as Pr(X | M,ϕ) is left
undefined. Below, we shall propose leveraging Maximum Causal Entropy Inverse
Reinforcement Learning (IRL) to select the demonstration likelihood distribution
in a regret minimizing manner.

3 Leveraging Inverse Reinforcement Learning

The key idea of Inverse Reinforcement Learning (IRL), or perhaps more accurately
Inverse Optimal Control, is to find the reward structure that best explains the
actions of a reward optimizing agent operating in a Markov Decision Process.
We formalize below.

Definition 4 A Markov Decision Process (MDP) is a probabilistic
automaton endowed with a reward map from states to reals, r : S → R.
This reward mapping is lifted to traces via,

R(ξ) def=
∑
s∈ξ

r(s). (3)

Remark 1. Note that a temporal discount factor, γ ∈ [0, 1] can be added into (3)
by introducing a sink state, $, to the MDP, where r($) = 0 and

Pr(s′ = $ | s, a) =
{
γ if s 6= $
1 otherwise

. (4)

Given a MDP, the goal of an agent is to maximize the expected trace reward.
In this work, we shall restrict ourselves to rewards that are given as a linear
combination of state features, f : S → Rn≥0, e.g.,

r(s) = θ · f(s) (5)

for some θ ∈ Rn. Note that since state features can themselves be rewards, such
a restriction does not actually restrict the space of possible rewards.

Example 1. Let the components of f(s) be distances to various locations on a map.
Then the choice of θ characterizes the relative preferences in avoiding/reaching
the respective locations.

Formally, we model an agent as acting according to a policy.

Definition 5 A policy, π, is a state indexed distribution over actions,

Pr(a | s) = π(a | s). (6)

In this language, the agent’s goal is equivalent to finding a policy which maximizes
the expected trace reward. We shall refer to a trace generated by such an
agent as a demonstration. Due to the Markov requirement, the likelihood of a
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demonstration, ξ, given a particular policy, π, and probabilistic automaton, M ,
is easily stated as:

Pr(ξ | M,π) =
∏

s′,a,s∈ξ

Pr(s′ | s, a) · Pr(a | s). (7)

Thus, the likelihood of multi-set of i.i.d demonstrations, X, is given by:

Pr(X | M,π) =
∏
ξ∈X

Pr(ξ | M,π). (8)

3.1 Inverse Reinforcement Learning (IRL): As previously stated, the
main motivation in introducing the MDP formalism has been to discuss the
inverse problem. Namely, given a set of demonstrations, find the reward that best
“explains” the agent’s behavior, where by “explain” one typically means that
under the conjectured reward, the agent’s behavior was approximately optimal.
Notice however, that many undesirable rewards satisfy this property. For example,
consider the following reward in which every demonstration is optimal,

r : s 7→ 0. (9)

Furthermore, observe that given a fixed reward, many policies are approximately
optimal! For instance, using (9), an optimal agent could pick actions uniformly
at random or select a single action to always apply.

3.2 Maximum Causal Entropy IRL: A popular, and in practice effective,
solution to the lack of unique policy conundrum is to appeal to the principle
of maximum causal entropy [32]. To formalize this principle, we recall the
definitions of causally conditioned probability [17] and causal entropy [17][23].

Definition 6 Let X1:τ
def= X1, . . . , Xτ denote a temporal sequence of τ ∈ N

random variables. The probability of a sequence Y1:τ causally conditioned
on sequence X1:τ is:

Pr(Y1:τ || X1:τ ) def=
τ∏
t=1

Pr(Yt | X1:t, Y1:t−1) (10)

The causal entropy of Y1:τ given X1:τ is defined as,

H(Y1:τ || X1:τ ) def= E
Y1:τ ,X1:τ

[− log(Pr(Y1:τ || X1:τ ))] (11)

In the case of inverse reinforcement learning, the principle of maximum causal
entropy suggests forecasting using the policy whose action sequence, A1:τ , has
the highest causal entropy, conditioned on the state sequence, S1:τ . That is, find
the policy that maximizes

H(A1:τ || S1:τ ), (12)

subject to feature matching constraints, E[f ], e.g., does the resulting policy, π∗,
complete the task as seen in the data. Compared to all other policies, this policy
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(i) minimizes regret with respect to model/reward uncertainty, (ii) ensures that
the agent’s predicted policy does not depend on the future, (iii) is consistent
with observed feature statistics [32].

Concretely, as proved in [32], when an agent is attempting to maximize the
sum of feature state rewards,

∑T
t=1 θ · f(st), the principle of maximum causal

entropy prescribes the following policy:

Maximum Causal Entropy Policy:

log
(
πθ(at | st)

) def= Qθ(at, st)− Vθ(st) (13)

where Qθ(at, st)
def= E

st+1
[Vθ(st+1) | st, at] + θ · f(st)

Vθ(st)
def= ln

∑
at

eQθ(at,st) def= softmaxatQθ(at, st).
(14)

where, θ is such that (14) results in a policy which matches feature demonstrations.
Remark 2. Note that replacing softmax with max in (14) yields the standard
Bellman Backup [2] used to compute the optimal policy in tabular reinforcement
learning. Further, it can be shown that maximizing causal entropy corresponds to
believing that the agent is exponentially biased towards high reward policies [32]:

Pr(πθ | M) ∝ exp
(
E
ξ
[Rθ(ξ) | πθ,M ]

)
, (15)

where (14) is the most likely policy under (15).

Remark 3. In the special case of scalar state features, f : S → R≥0, the maximum
causal entropy policy (14) becomes increasingly optimal as θ ∈ R increases (since
softmax monotonically approaches max). In this setting, we shall refer to θ as
the agent’s rationality coefficient.

3.3 Non-Markovian Rewards: The MDP formalism traditionally requires
that the reward map be Markovian (i.e., state based); however, in practice, many
tasks are history dependent, e.g. touch a red tile and then a blue tile.

A common trick within the reinforcement learning literature is to simply
change the MDP and add the necessary history to the state so that the reward
is Markovian, e.g. a flag for touching a red tile. However, in the case of inverse
reinforcement learning, by definition, one does not know what the reward is.
Therefore, one cannot assume to a priori know what history suffices.

Further exacerbating the situation is the fact that naïvely including the entire
history into the state results in an exponential increase in the number of states.
Nevertheless, as we shall soon see, by restricting the class of rewards to represent
task specifications, this curse can be mitigated to only result in a blow-up that is
at most linear in the state space size and in the trace length!

To this end, we shall find it fruitful to develop machinery for embedding the
full trace history into the state space. Explicitly, we shall refer to the process of
adding all history to a probabilistic automaton’s (or MDP’s) state as unrolling.
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Definition 7 Let M = (S, s0, A, δ) be a PA. The unrolling of M is a PA,
M ′ = (S′, s0, A, δ

′), where

S′ = {s0} ×
∞⋃
i=0

(A× S)i δ′(ξn+1, a, ξn) = δ(sn+1, a, sn)

ξn =
(
s0, . . . , (an−1, sn)

)
ξn+1 =

(
s0, . . . , (an, sn+1)

) (16)

If R : Sτ → R is a non-Markovian reward over τ -length traces, then we endow
the corresponding unrolled PA with the now Markovian Reward,

r′
(
s0, . . . , (an−1, sn)

)
def=
{
R(s0, . . . , sn) if n = τ

0 otherwise
. (17)

Further, by construction the reward is Markovian in S′ and only depends only
τ -length state sequences,

∞∑
t=0

r′
(
(s0, a0), . . . sτ

)
= R(s0, . . . , sτ ). (18)

Next, observe that for τ -length traces, the 11/2 player game formulation’s
bipartite graph forms a tree of depth τ (see Fig 3). Further, observe that each
leaf corresponds to unique τ -length trace. Thus, to each leaf, we associate the
corresponding trace’s reward, R(ξ). We shall refer to this tree as a decision
tree, denoted T.

a

b b d

1/8 7/81

gc e c e

1 1/8 7/8

c e c

1 1/8 7/8

e

1 7/8

1 1000000 0

t =0

t =1

t =2

agent action

enviroment action

Fig. 3: Decision tree generated by the PA shown in Fig. 2 and specification “By
τ = 2, reach a yellow tile while avoiding red tiles.”. Here a binary reward is given
depending on whether or not the agent satisfies the specification.

Finally, observe that the trace reward depends only on the sequence of agent
actions, A, and environment actions, Ae. That is, T can be interpreted as a
function:

T : (A×Ae)τ → R. (19)

3.4 Specifications as Non-Markovian Rewards: Next, with the intent
to frame our specification inference problem as an inverse reinforcement learning
problem, we shall overload notation and denote by ϕ the following non-Markovian
reward corresponding to a specification ϕ ∈ (A× S)τ ,
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ϕ(ξ) def=
{

1 if ξ ∈ ϕ
0 otherwise

. (20)

Note that the corresponding decision tree is then a Boolean predicate:

Tϕ : (A×Ae)τ → {0, 1}. (21)

3.5 Computing Maximum Causal Entropy Specification Policies: Now
let us return to the problem of computing the policy prescribed by (14). In partic-
ular, note that viewing the unrolled reward (17) as a scalar state feature results
in the following soft-Bellman Backup:

Qθ(at, ξt) = E [Vθ(st+1) | ξt, at]

Vθ(ξt) =
{
θ · ϕ(ξt) if t = τ

softmaxatQθ(at, ξt) otherwise
, (22)

where ξi ∈ {s0} × (A× S)i denotes a state in the unrolled MDP.

Eq (22) thus suggests a naïve dynamic programming scheme over T starting
at the t = τ leaves to compute Qθ and Vθ (and thus πθ).

1 71

1 7 1 1 7 1 7
1 0000000 0

smax

avg avg

smax smax smax

avg1
avg avg avg avg

1
avg

Q Q

Q Q Q Q Q Q

V

V V V

Fig. 4: Computation graph generated from
applying (14) to the decision tree shown
in Fig 3. Here smax and avg denote the
softmax and weighted average respectively.

Namely, in T, the chance nodes,
which correspond to action/state
pairs, are responsible for comput-
ing Q values and the decision nodes,
which correspond to states waiting
for an action to be applied, are re-
sponsible for computing V values.
For chance nodes this is done by
taking the softmax of the values of
the child nodes. Similarly, for deci-
sion nodes, this is done by taking a
weighted average of the child nodes,
where the weights correspond to the
probability of a given transition. This, at least conceptually, corresponds to
transforming T into a bipartite computation graph (see Fig 4).

Next, note that (i) the above dynamic programming scheme can be trivially
modified to compute the expected trace reward of the maximum causal entropy
policy and (ii) the expected reward increases 1 with the rationality coefficient θ.

Observe then that, due to monotonicity, bisection (binary search) approxi-
mates θ to tolerance ε in O(log(1/ε)) time. Additionally, notice that the likelihood
of each demonstration can be computed by traversing the path of length τ in T
corresponding to the trace and multiplying the corresponding policy and transi-
tion probabilities (8). Therefore, if |Ae| ∈ N denotes the maximum number of
1 Formally, this is due to (a) softmax and average being monotonic (b) trajectory
rewards only increasing with θ, and (c) π exponentially biasing towards high Q-values.
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outcomes the environment can choose from (i.e, the branching factor for chance
nodes), it follows that the run-time of this naïve scheme is:

O

( compute policy︷ ︸︸ ︷(
|A| · |Ae|

)τ
︸ ︷︷ ︸

|T|

· log(1/ε)︸ ︷︷ ︸
Feature Matching

+ τ |X|︸︷︷︸
evaluate demos

)
. (23)

3.6 Task Specification Rewards: Of course, the problem with this naïve
approach is that explicitly encoding the unrolled tree, T, results in an exponential
blow-up in the space and time complexity. The key insight in this paper is that
the additional structure of task specifications enables avoiding such costs while
still being expressive. In particular, as is exemplified in Fig 4, the computation
graphs for task specifications are often highly redundant and apt for compression.

t=1

1/8

7/8 7/8

1/8
1

0

t=0 t=2

Fig. 5: Reduction of the de-
cision tree shown in Fig. 3.

In particular, we shall apply the following two
semantic preserving transformations: (i) Eliminate
nodes whose children are isomorphic sub-graphs, i.e.,
inconsequential decisions (ii) Combine all isomor-
phic sub-graphs i.e., equivalent decisions. We refer
to the limit of applying these two operations as a re-
duced ordered probabilistic decision diagram
and shall denote2 the reduced variant of T as T .

Remark 4. For those familiar, we emphasize that these decision diagrams are
MDPs, not Binary Decision Diagrams (see Sec. 4). Importantly, more than
two actions can be taken from a node if max(|A|, |Ae|) ≥ 2 and Ae has a
state dependent probability distribution attached to it. That said, the above
transformations are exactly the reduction rules for BDDs [3].

As Fig 5 illustrates, reduced decision diagrams can be much smaller than their
corresponding decision tree. Nevertheless, we shall briefly postpone characterizing
|T | until developing some additional machinery in Sec. 4. Computationally, three
problems remain.

1. How can our naïve dynamic programming scheme be adapted to this com-
pressed structure. In particular, because many interior nodes have been
eliminated, one must take care when applying (22).

2. How do concrete demonstrations map to paths in the compressed structure
when evaluating likelihoods (8).

3. How can one construct T without first constructing T, since failing to do so
would negate any complexity savings.

We shall postpone discussing solutions to the second and third problems un-
til Sec. 4. The first problem however, can readily be addressed with the tools
at hand. Recall that in the variable ordering, nodes alternate between decision
and chance nodes (i.e., agent and environment decisions), and thus alternate
2 Mnemonic: T is a (typographically) slimmed down variant of T
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between taking a softmax and expectations of child values in (22). Next, by
definition, if a node is skipped in T , then it must have been inconsequential.
Thus the trace reward must have been independent of the decision made at that
node. Therefore, the softmax/expectation’s corresponding to eliminated nodes
must have been over a constant value - otherwise the eliminated sequences would
be distinguishable w.r.t ϕ. The result is summarized in the following identities,
where α denotes the value of an eliminated node’s children.

softmax(
|A|︷ ︸︸ ︷

α, . . . , α) = log(eα + . . .+ eα) = ln(|A|) + α (24)

E
x

[α] =
∑
x

p(x)α = α (25)

Of course, it could also be the case that a sequence of nodes is skipped in T .
Using (24), one can compute the change in value, ∆, that the eliminated sequence
of n decision nodes and any number of chance nodes would have applied in T:

∆(n, α) = ln(|A|n) + α = n ln(|A|) + α (26)

Crucially, evaluation of this compressed computation graph is linear in |T | which
as shall later prove, is often much smaller than |T|.

4 Constructing and Characterizing T

Let us now consider how to avoid the construction of T and characterize the
size of the reduced ordered decision diagram, T . We begin by assuming that the
underlying dynamics is well-approximated in the random-bit model.

Definition 8 For q ∈ N, let c ∼ {0, 1}q denote the random variable repre-
senting the result of flipping q ∈ N fair coins. We say a probabilistic automata
M = (S, s0, A, δ) is (ε, q) approximated in the random bit model if there
exists a mapping,

δ̂ : S ×A× {0, 1}q → S (27)

such that for all s, a, s′ ∈ S ×A× S:∣∣∣∣ δ(s, a, s′)− Pr
c∼{0,1}q

(
δ̂(s, a, c) = s′

)∣∣∣∣ ≤ ε. (28)

For example, in our gridworld example (Fig 2a), if c ∈ {0, 1}3, elements of s
are interpreted as pairs in R2, and the right/down actions are interpreted as the
addition of the unit vectors (1, 0) and (0, 1) then,

δ̂(s, a, c) =


s if maxi[(s+ a)i] > 1
s+ (0, 1) else if c = 0
s+ a otherwise

, (29)
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As can be easily confirmed, (29) satisfies (28) with ε = 0. In the sequel, we
shall take access to δ̂ as given3. Further, to simplify exposition, until Sec 5.1, we
shall additionally require that the number of actions, |A|, be a power of 2. This
assumption implies that A can be encoded using exactly log2(|A|) bits.

Under the above two assumptions, the key observation is to recognize that T
(and thus T ) can be viewed as a Boolean predicate over an alternating sequence
of action bit strings and coin flip outcomes determining if the task specification
is satisfied, i.e.,

T : {0, 1}n → {0, 1}, (30)

where n def= τ ·log2(|A×Ae|) = τ ·(q+log2(|A|)). That is to say, the resulting decision
diagram can be re-encoded as a reduced ordered binary decision diagram [3].

Definition 9 A reduced ordered binary decision diagram (BDD), is
a representation of a Boolean predicate h(x1, x2, . . . , xn) as a reduced ordered
(deterministic) decision diagram, where each decision corresponds to testing
a bit xi ∈ {0, 1}. We denote the BDD encoding of T as B.

Binary decision diagrams are well developed both in a theoretical and practical
sense. Before exploring these benefits, we first note that this change has introduced
an additional problem. First, note that in B, decision and chance nodes from
T are now encoded as sequences of decision and chance nodes. For example, if
a ∈ A is encoded by the 4-length bit sequence b1b2b3b4, then four decisions are
made by the agent before selecting an action. Notice however that the original
semantics are preserved due to associativity of the softmax and E operators. In
particular, recall that by definition,

softmax(α1, . . . , α4) = ln(
4∑
i=1

eαi) = ln(eln(eα1 +eα2 ) + eln(eα3 +eα4 ))

def= softmax(softmax(α1, α2), softmax(α3, α4))

(31)

and thus the semantics of the sequence decision nodes is equivalent to the decision
node in T. Similarly, recall that the coin flips are fair, and thus expectations
are computed via avg(α1, . . . , αn) = 1/n(

∑n
i=1 αi). Therefore, averaging over two

sequential coin flips yields,

avg(α1, . . . , α4) def= 1
4

4∑
i=1

αi = 1
2(1

2(α1 + α2) + 1
2(α3 + α4))

def= avg(avg(α1, α2), avg(α3, α4))

(32)

which by assumption (28), is the same as applying E on the original chance node.
Finally, note that skipping over decisions needs to be adjusted slightly to account
for sequences of decisions. Recall that via (26), the corresponding change in value,
3 See [31] for an explanation on systematically deriving such encodings.
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∆, is a function of initial value, α, and the number of agent actions skipped,
i.e., |A|n for n skipped decision nodes. Thus, in the BDD, since each decision
node has two actions, skipping k decision bits corresponds to skipping 2k actions.
Thus, if k decision bits are skipped over in the BDD, the change in value, ∆,
becomes,

∆(k, α) = α+ k ln(2). (33)
Further, note that ∆ can be computed in constant time while traversing the
BDD. Thus, the dynamic programming scheme is linear in the size of B.

4.1 Size of B: Next we return to the question of how big the compressed
decision diagram can actually be. To this aim, we cite the following (conservative)
bound on the size of an BDD given an encoding of the corresponding Boolean
predicate in the linear model computation illustrated in Fig 6 (for more details,
we refer the reader to [16]).

f1 f2 fn

ak

bk

x1 x2 xn

f

Fig. 6: Generic network of Boolean modules for which Theorem 1 holds.

In particular, consider an arbitrary Boolean predicate

f : {0, 1}n → {0, 1} (34)

and a sequential arrangement of n Boolean modules, f1, f2, . . . , fn where each fi
has shape:

fi : {0, 1} × {0, 1}ai−1 × {0, 1}bi → {0, 1}ai × {0, 1}bi−1 , (35)

and takes as input xi as well as ai−1 outputs of its left neighbor and bi outputs
of the right neighbor (b0 = 0, an = 1). Further, assume that this arrangement is
well defined, e.g. for each assignment to x1, . . . , xn there exists a unique way to
set each of the inter-module wires. We say these modules compute f if the final
output is equal to f(x1, . . . , xn).

Theorem 1 If f can be computed by a linear arrangement of such modules,
ordered x1, x2, . . . , xn, then the size, S ∈ N, of its BDD (in the same order),
is upper bounded [3] by:

S ≤
n∑
k=1

2ak·(2bk). (36)

To apply this bound to our problem, recall that B computes a Boolean function
where the decisions are temporally ordered and alternate between sequences of
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agent and environment decisions. Next, observe that because the traces are
bounded (and all finite sets are regular), there exists a finite state machine which
can monitor the satisfaction of the specification.
Remark 5. In the worst case, the monitor could be the unrolled decision tree,
T. This monitor would have exponential number of states. In practice, the
composition of the dynamics and the monitor is expected to be much smaller.

Further, note that because this composed system is causal, no backward
wires are needed, e.g., ∀k . bk = 0. In particular, observe that because the
composition of the dynamics and the monitor is Markovian, the entire system can
be uniquely described using the monitor/dynamics state and agent/environment
action (see Fig. 7). This description can be encoded in log2(2q|A × S × Sϕ|)
bits, where q denotes the number of coin flips tossed by the environment and Sϕ
denotes the monitor state. Therefore, ak is upper bounded by log2(2q|A×S×Sϕ|).
Combined with (36) this results in the following bound on the size of B.

Corollary 1 Let M = (S, s0, A, δ) be a probabilistic automaton whose prob-
abilistic transitions can be approximated using q coin flips and let ϕ be a
specification defined for horizon τ and monitored by a finite automaton with
states Sϕ. The corresponding BDD, B, has size bounded by:

|B| ≤

# inputs︷ ︸︸ ︷
τ ·
(

log(|A|) + q
)
·

bound on 2ak︷ ︸︸ ︷(
2q|A× S × Sϕ|

)
(37)

f2
log2(2q|A× S × Sϕ|)

action or coin flip

Current State +
Partial Action +
Partial Coin Flip

Fig. 7: Generic module in linear
model of computation for B. Note
that backward edges are not required.

Notice that the above argument implies
that as the episode length grows, |B| grows
linearly in the horizon/states and quasi-
linearly in the agent/environment actions!
Remark 6. Note that this bound actually
holds for the minimal representation of
the composed dynamics/monitor (even if
it’s unknown a-prori!). For example, if the
property is true, the BDD requires only
one state (always evaluate true). This also
illustrates that the above bound is often very conservative. In particular, note
that for ϕ = true, |B| = 1 , independent of the horizon or dynamics. However,
the above bound will always be linear in τ . In general, the size of the BDD will
depend on the particular symmetries compressed.
Remark 7. With hindsight, corollary 1 is not too surprising. In particular, if the
monitor is known, then one could explicitly compose the dynamics MDP with
the monitor, with the resulting MDP having at most |S × Sϕ| states. If one then
includes the time step in the state, one could perform the soft-Bellman Backup
directly on this automaton. In this composed automaton each (action, state) pair
would need to be recorded. Thus, one would expect O(|S × Sϕ ×A|) space to be
used. In practice, this explicit representation is much bigger than B due to the
BDDs ability to skip over time steps and automatically compress symmetries.
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4.2 Constructing B: One of the biggest benefits of the BDD representation
of a Boolean function is the ability to build BDDs from a Boolean combinations of
other BDDs. Namely, given two BDDs with n and m nodes respectively, it is well
known that the conjunction or disjunction of the BDDs has at most n ·m nodes.
Thus, in practice, if the combined BDD’s remain relatively small, Boolean combi-
nations remain efficient to compute and one does not construct the full binary
decision tree! Further, note that BDDs support function composition. Namely,
given predicates f(x1, . . . , xn) and n predicates gi(y1, . . . , yk) the function

f

(
g1(y1, . . . , yk), . . . , gn(y1, . . . , yk)

)
(38)

can be computed in time [16]:

O(n · |Bf |2 ·max
i
|Bgi |), (39)

where Bf is the BDD for f and Bgi are the BDDs for gi. Now, suppose
δ̂1, . . . δ̂log(|S|) are Boolean predicates such that:

δ̂(s,a, c) = (δ̂1(s,a, c), . . . , δ̂log(|S|)(s,a, c)). (40)

Thm 1 and an argument similar to that for Corr 1 imply then that constructing
B, using repeated composition, takes time bounded by a low degree polynomial
in |A×S×Sϕ| and the horizon. Moreover, the space complexity before and after
composition are bounded by Corr 1.

4.3 Evaluating Demonstrations: Next let us return to the question of
how to evaluate the likelihood of a concrete demonstration in our compressed
BDD. The key problem is that the BDD can only evaluate (binary) sequences of
actions/coin flips, where as demonstrations are given as sequences of action/state
pairs. That is, we need to algorithmically perform the following transformation.

s0a0s1 . . .ansn+1 7→ a1c1 . . .ancn (41)

Given the random bit model assumption, this transformation can be rewritten
as a series of Boolean Satisifability problems:

∃ ci . δ̂(si,ai, ci) = si+1 (42)

While potentially intimidating, in practice such problems are quite simple for
modern SAT solvers, particularly if the number of coin flips used is small.
Furthermore, many systems are translation invariant. In such systems, the results
of a single query (42), can be reused on other queries. For example, in (29), c = 0
always results in the agent moving to the right. Nevertheless, in general, if q coin
flips are used, encoding all the demonstrations takes at most O(|X| · τ · 2q), in
the worst case.
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4.4 Run-time analysis: We are finally ready to provide a run-time analysis
for our new inference algorithm. The high-level likelihood estimation procedure
is described in Fig 8. First, the user specifies a dynamical system and a (multi-
) set of demonstrations. Then, using a user-defined mechanism, a candidate task
specification is selected. The system then creates a compressed representation of
the composition of the dynamical system with the task specification. Then, in
parallel, the maximum causal entropy policy is estimated and the demonstrations
are themselves encoded as bit-vectors. Finally, the likelihood of generating the
encoded demonstrations is computed.

Compose
&

Compress

Encode
Traces

Fit
Max Causal

Entropy Policy

Estimate
Demonstration
Likelihoods

Dynamics

Specification
BDD

Demonstrations
Bit-Vectors

Policy
over

BDD

Likelihood
Estimate

Fig. 8: High level likelihood estimation procedure described in this paper.

There are three computational bottlenecks in the compressed scheme. First,
given a candidate specification, ϕ, one needs to construct B. As argued in Sec 4.2,
this takes time at most polynomial in the horizon, monitoring automata size, and
MDP size (in the random-bit model). Second is the process of computing Q and
V values by tuning the rationality coefficient to match a particular satisfaction
probability. Just as with the naïve run-time (23), this process takes time linear
in the size of |B| and logarithmic in the inverse tolerance 1/ε. Further, using
Corr 1, we know that |B| is at most linear in horizon and quasi-linear in the MDP
size. Thus, the policy computation takes time polynomial in the MDP size and
logarithmic in the inverse tolerance. Finally, as before, evaluating the likelihoods
takes time linear in the number of demonstrations and the horizon. However, we
now require an additional step of finding coin-flips which are consistent with the
demonstrations. Thus, the compressed run-time is bounded by:

O

((
|X|︸︷︷︸

#Demos

·

Feature Matching︷ ︸︸ ︷
log
(
ε−1) ) · POLY

(Horizon︷︸︸︷
τ , |S|, |S|ϕ||, |A|︸ ︷︷ ︸

Composed MDP size

,

#Coin Flip Outcomes︷︸︸︷
2q
))

(43)

Remark 8. In practice, this analysis is fairly conservative since BDD composition
is often fast, the bound given by Corr 1 is loose, and the SAT queries under-
consideration are often trivial.

5 Additional Model Refinements

5.1 Conditioning on Valid Actions: So far, we have assumed that the
number of actions is a power of 2. Functionally, this assumption makes it so each



18 Vazquez-Chanlatte et al.

assignment to the action decision bits corresponds to a valid action. Of course,
general MDPs have non-power of 2 action sets, and so it behooves us to adapt
our method for such settings. The simplest way to do so is to use a 3-terminal
Binary Decision Diagram. In particular, while each decision is still Boolean, there
has now three possible types of leaves, 0, 1, and ⊥. In the adapted algorithm,
edges leading to ⊥ are simply ignored, as they semantically correspond to invalid
assignments to action or coin flip bits. A similar analysis can be done using
these three valued decision diagrams, and as with BDDs, there exist efficient
implementations of multi-terminal BDDs.
Remark 9. This generalization also opens up the possibility of state dependent
action sets, where A is now the union of all possible actions, e.g, disable the
action for moving to the right when the agent is on the right edge of the grid.

5.2 Choice of binary co-domain: One might wonder how sensitive this
formulation is to the choice of R(ξ) = θ · ϕ(ξ). In particular, how does changing
the co-domain of ϕ from {0, 1} to any other real values, i.e.,

ϕ′ : (A× S)τ → {a, b},

change the likelihood estimates in our maximum causal entropy model. We briefly
remark that, subject to some mild technical assumptions, almost any two real
values could be used for ϕ’s co-domain. Namely, observe that unless both a and b
are zero, the expected satisfaction probability, p, is in one-to-one correspondence
with the expected value of ϕ′, i.e.,

E[ϕ′] = a · p+ b · (1− p).

Thus, if a policy is feature matching for ϕ, it must be feature matching for ϕ′
(and vice-versa). Therefore, the space of consistent policies is invariant under
such transformations. Finally, because the space of policies is unchanged, the
maximum causal entropy policies must remain unchanged. In practice, we prefer
the use of {0, 1} as the co-domain for ϕ since it often simplifies many calculations.

5.3 Variable Episode Lengths (with discounting): As earlier promised,
we shall now discuss how to extend our model to include variable length episodes.
For simplicity, we shall limit our discussion to the setting where at each time
step, the probability that the episode will end is γ ∈ (0, 1]. As we previously
discussed, this can be modeled by introducing a sink state, $, representing the
end of an episode (4). In the random bit model, this simply adds a few additional
enviroment coin flips, corresponding to the enviroments new transitions to the
sink state.
Remark 10. Note that when unrolled, once the end of episode transition happens,
all decisions are assumed inconsequential w.r.t ϕ. Thus, all subsequent decisions
will be compressed by in the BDD, B.
Finally, observe that the probability that the episode ending increases exponen-
tially, implying that the planning horizon need not be too big, i.e., the probability
that the episode has not ended by timestep, τ ∈ N, is: (1 − γ)τ . Thus, letting
τ = dln(ε/1−γ)e ensures that with probability at least 1− ε the episode has ended.
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6 Experiment
Below we report empirical results that provide evidence that our proposed
technique is robust to demonstration errors and that the produced BDDs are
smaller than a naïve dynamic programming scheme. To this end, we created a
reference implementation [29] in Python. BDD and SAT solving capabilities are
provided via dd [21] and pySAT [12] respectively. To encode the task specifications
and the random-bit model MDP, we leveraged the py-aiger ecosystem [28] which
includes libraries for modeling Markov Decision Processes and encoding Past
Tense Temporal Logic as sequential circuits.

Fig. 9

Problem: Consider a gridworld where an agent can
attempt to move up, down, left, or right; however, with
probability 1/32, the agent slips and moves left. Further,
suppose a demonstrator has provided the six unlabeled
demonstrations shown in Fig. 9 for the task: “Within 10
time steps, touch a yellow (recharge) tile while avoiding
red (lava) tiles. Additionally, if a blue (water) tile is
stepped on, the agent must step on a brown (drying) tile
before going to a yellow (recharge) tile.” All of the solid
paths satisfy the task. The dotted path fails because
the agent keeps slipping left and thus cannot dry off by t = 10. Note that due to
slipping, all the demonstrations that did not enter the water are sub-optimal.
Spec Policy Size ROBDD Relative Log Likelihood

(#nodes) build time (compared to True)
true 1 0.48s 0
ϕ1 = Avoid lava 1797 1.5s -22
ϕ2 = Eventually Recharge 1628 1.2s 5
ϕ3 = Don’t recharge while wet 850 1.6s -10
ϕ4

def= ϕ1 ∧ ϕ2 523 1.9s 4
ϕ5

def= ϕ1 ∧ ϕ3 1913 1.5s -2
ϕ6

def= ϕ2 ∧ ϕ3 1842 2s 15
ϕ∗ def= ϕ1 ∧ ϕ2 ∧ ϕ3 577 1.6s 27

Results: For a small collection of specifications, we have computed the size of
the BDD, the time it took to construct the BDD, and the relative log likelihoods
of the demonstrations4,

RelativeLogLikelihood(ϕ) def= ln
(

Pr(demos | ϕ)
Pr(demos | true)

)
, (44)

where each maximum entropy policy was fit to match the corresponding
specification’s empirical satisfaction probability. We remark that the computed
BDDs are small compared to other straw-man approaches. For example, an
explicit construction of the product of the monitor, dynamics, and the current
time step would require space given by:

τ · |S| · |A| · |Sϕ| = (10 · 8 · 8 · 4) · |Sϕ| = 2560 · |Sϕ| (45)
4 The maximum entropy policy for ϕ = true applies actions uniformly at random.
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The resulting BDDs are much smaller than (45) and the naïve unrolled decision
tree. We note that the likelihoods appear to (qualitatively) match expectations.
For example, despite an unlabeled negative example, the demonstrated task,
ϕ∗, is the most likely specification. Moreover, under the second most likely
specification, which omits the avoid lava constraint, the sub-optimal traces that
do not enter the water appear more attractive.

Finally, to emphasize the need for our causal extension, we compute the
likelihoods of ϕ∗, ϕ1, ϕ2 for our opening example (Fig. 1) using both our causal
model and the prior non-causal model [30]. Concretely, we take τ = 15, a slip
probability of 1/32, and fix the expected satisfaction probability to 0.9. The
trace shown in Fig. 1 acts as the sole (failed) demonstration for ϕ∗. As desired,
our causal extension assigned more than 3 times the relative likelihood to ϕ∗
compared to ϕ1, ϕ2, and true. By contrast, the non-causal model assigns relative
log likelihoods (−2.83,−3.16,−3.17) for (ϕ1, ϕ2, ϕ

∗). This implies that (i) ϕ∗ is
the least likely specification and (ii) each specification is less likely than true!
7 Conclusion and Future Work
Motivated by the problem of learning specifications from demonstrations, we
have adapted the principle of maximum causal entropy to provide a posterior
probability to a candidate task specification given a multi-set of demonstrations.
Further, to exploit the structure of task specifications, we proposed an algorithm
that computes this likelihood by first encoding the unrolled Markov Decision
Process as a reduced ordered binary decision diagram (BDD). As illustrated on
a few toy examples, BDDs are often much smaller than the unrolled Markov
Decision Process and thus could enable efficient computation of maximum causal
entropy likelihoods, at least for well behaved dynamics and specifications.

Nevertheless, two major questions remain unaddressed by this work. First is
the question of how to select which specifications to compute likelihoods for. For
example, is there a way to systematically mutate a specification to make it more
likely and/or is it possible to systematically reuse computations for previously
evaluated specifications to propose new specifications.

Second is how to set prior probabilities. Although we have largely ignored
this question, we view the problem of setting good prior probabilities as essential
to avoid over fitting and/or making this technique require only one or two
demonstrations. However, we note that prior probabilities can make inference
arbitrarily more difficult since any structure useful for optimization imposed by
our likelihood estimate can be overpowered.

Finally, additional future work includes extending the formalism to infinite
horizon specifications, continuous dynamics, and characterizing the optimal set
of teacher demonstrations.
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